wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

dydx+ycosx=ynsin2x.

A
1yn+1=2sinx21n+ce(n1)sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1yn1=2sinx+21n+ce(n1)sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1yn1=2sinx21n+ce(n1)sinx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
1yn1=2sinx21n+ce(n1)sinx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1yn1=2sinx21n+ce(n1)sinx
dydx+ycosx=ynsin2x1yndydx+1yn1cosx=2sinxcosx
Put 1yn1=v(1n)1yndydx=dvdx
11ndvdx+vcosx=2sinxcosxdvdx+v(1n)cosx=2(1n)sinxcosx ...(1)
Here P=(1n)cosxPdP=(1n)cosxdx=(1n)sinx
I.F.=e(1n)sinx
Multiplying (1) by I.F. we get
e(1n)sinxdvdx+e(1n)sinx.v(1n)cosx=e(1n)sinx.2(1n)sinxcosx
Integrating both side, we get
ve(1n)sinx=2(1n)sinxcosx.e(1n)sinxdx
Put (1n)sinx=t(1n)cosxdx=dt
vet=2t1netdt=21net(t1)+cv=21n(t1)+cet
1yn1=2sinx21n+ce(n1)sinx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon