The correct option is
B 1yn−1=2sinx−21−n+ce(n−1)sinxdydx+ycosx=ynsin2x⇒1yndydx+1yn−1cosx=2sinxcosxPut 1yn−1=v⇒(1−n)1yndydx=dvdx
∴11−ndvdx+vcosx=2sinxcosx⇒dvdx+v(1−n)cosx=2(1−n)sinxcosx ...(1)
Here P=(1−n)cosx⇒∫PdP=∫(1−n)cosxdx=(1−n)sinx
∴I.F.=e(1−n)sinx
Multiplying (1) by I.F. we get
e(1−n)sinxdvdx+e(1−n)sinx.v(1−n)cosx=e(1−n)sinx.2(1−n)sinxcosx
Integrating both side, we get
ve(1−n)sinx=∫2(1−n)sinxcosx.e(1−n)sinxdx
Put (1−n)sinx=t⇒(1−n)cosxdx=dt
∴vet=∫2t1−netdt=21−net(t−1)+c⇒v=21−n(t−1)+ce−t
⇒1yn−1=2sinx−21−n+ce(n−1)sinx