wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

dydx+ycotx=y2sin2xcos2x.
Its solution is 1ycosecx=13cos3x+c
If true enter 1 else enter 0.

Open in App
Solution

dydx+ycotx=y2sin2xcos2x
y2dydx+cotxy=sin2xcos2x
Let
y1=t
Then
y2dy=dt
Or
y2dydx=dtdx
Hence the differential equation transforms to
dtdx+tcotx=sin2cos2x
IF=ecotx.dx
=elnsinx
=sinx
Hence
sinxdtdx+tcosx=sin3xcos2x
sinxdt+tcosx.dx=sin3xcos2dx
d((sinx)t)=sin3xcos2dx
Let
I=sin3xcos2dx
Let
cos2x=t
2cosx.sinxdx=dt
I=sin2x.cosx(cosx.sinx)dx
=sin2xcosx(dt2)
=12[(1t)(t)dt]
=12[tt3/2dt]
=12[2tt32t2t5]
=t2t5tt3
=cos5x5cos3x3
Hence
d((sinx)t)=sin3xcos2dx
sinx.t=cos5x5cos3x3+C
sinxy=cos5x5cos3x3+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon