dydx+ycotx=y2sin2xcos2x
y−2dydx+cotxy=sin2xcos2x
Let
y−1=t
Then
−y−2dy=dt
Or
−y−2dydx=dtdx
Hence the differential equation transforms to
dtdx+tcotx=sin2cos2x
IF=e∫cotx.dx
=elnsinx
=sinx
Hence
sinxdtdx+tcosx=sin3xcos2x
sinxdt+tcosx.dx=sin3xcos2dx
d((sinx)t)=sin3xcos2dx
Let
I=∫sin3xcos2dx
Let
cos2x=t
−2cosx.sinxdx=dt
I=∫sin2x.cosx(cosx.sinx)dx
=∫sin2xcosx(−dt2)
=−12[∫(1−t)(√t)dt]
=−12[∫√t−t3/2dt]
=−12[2t√t3−2t2√t5]
=t2√t5−t√t3
=cos5x5−cos3x3
Hence
d((sinx)t)=sin3xcos2dx
sinx.t=cos5x5−cos3x3+C
sinxy=cos5x5−cos3x3+C