The correct option is
C −(d2ydx2)(dydx)−3Recalling that dxdy=1dydx, we see that
d2xay2=ddy(dxdy)=ddy⎛⎜
⎜
⎜⎝1dydx⎞⎟
⎟
⎟⎠
Now by quotient rule, we have that
ddy⎛⎜
⎜
⎜⎝1dydx⎞⎟
⎟
⎟⎠=−ddy(dydx)(dydx)2
=−dxdy.ddx(dydx)(dydx)2
=−dxdy.d2ydx2(dydx)2
=−d2ydx2(dydx)3