The correct option is
D R2[tanAΔ1+tanBΔ2+tanCΔ3]We know that
Δ=abc/4Rso Δ1=OB×OC×BC4R1=aR24R1
⇒aR1=4ΔR2 similarly
bR2=4Δ2R2,cR3=4Δ3R2
Hence aR1+bR2+cR3=4R2(Δ1+Δ2+Δ3)=4ΔR2
BOD=12BOC=A
From ΔOBD,a/22r1=tanA
⇒ar1=4tanA, similarly br2=4tanB,cr3=4tanC
Hence ar1+br2+cr3=4(tanA+tanB+tanC)
=4tanA tanB tanC [∵A+B+C=180o]
a=4r1tanA=4Δ1R1R2⇒R1r1=R2tanAΔ1
similarly R2r2=R2tanBΔ2,R3r3=R2tanCΔ3
Hence
R1r1+R2r2+R3r3=R2[tanAΔ1+tanBΔ2+tanCΔ3]