sin3θ−cos3θsinθ−cosθ−cosθ√1+cot2θ−2tanθcotθ=−1 , is true for
A
θϵ(0,π2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
θϵ(π2,π)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
θϵ(π,3π2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
θϵ(3π2,2π)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Bθϵ(0,π2) Cθϵ(π2,π) We have, sin3θ−cos3θsinθ−cosθ=sin2θ+cos2θ+sinθcosθ Using this in the given equation we get, ⇒1+sinθcosθ−|sinθ|cosθ−2=−1 ⇒|sinθ|cosθ=sinθcosθ So both option A and B are appropriate