The correct option is A sinAsinB
The value of sin(A−C)+2sinA+sin(A+C)sin(B+C)+2sinB+sin(B+C)
=sin(A−C)+sin(A+C)+2sinAsin(B−C)+sin(B+C)+2sinB
=2sin(A−C+A+C2)cos(A−C−A−C2)+2sinA2sin(B−C+B+C2)cos(B−C−B−C2)+2sinB
=2sinAcosC+2sinC2sinBcosC+2sinB
=2sinA(cosC+1)2sinB(cosC+1)=sinAsinB