The correct option is
A 2Lines are,
x−12=y3=z2=k1(assume) .......(1)
and x−32=y5=z−24=k2(assume) ...........(2)
So any point on (1) is P(2k1+1,3k1,2k1)
And any point on (2) is Q(2k2+3,5k2,4k2+2)
Now direction ratio of PQ are 2k2−2k1+2,5k2−3k1 and 4k2−2k1+2
Since PQ⊥(1)
⇒2(2k2−2k1+2)+3(5k2−3k1)+2(4k2−2k1+2)=0
⇒27k2−17k1+8=0 ⟶(3)
Also PQ⊥(2)
⇒2(2k2−2k1+2)+5(5k2−3k1)+4(4k2−2k1+2)=0
⇒15k2−9k1+4=0 ⟶(4)
Solving (3) and (4), we get k1=1,k2=13Therefore, P=(3,3,2) and Q=(113,53,103)
ergo, PQ=√(113−3)2+(53−3)2+(103−2)2=2