LHS=x2−x−1x3−8;RHS=Ax−2+Bx+Cx2+2x+4 =A(x2+2x+4)x3−8+(Bx+C)(x−2) x2−x−1=A(x2+2x+4)+(Bx+C)(x−2) LHS=RHS comparing the co-efficient of x2 we get A+B=1