The correct option is A I1=2I2
I2=∫π4−π4ln(sinx+cosx)dx
=∫π40(ln(sinx+cosx)+ln(sin(−x)+cos(−x)))dx
=∫π40(ln(sinx+cosx)+ln(cosx−sinx))dx
=∫π40ln(cos2x−sin2x)dx
=∫π40ln(cos2x)dx
Putting 2x=t,i.e.,dt2=dx, we get
I2=12∫π20ln(cost)dt=12∫π20ln(cos(π2−t))dt
=12∫π20ln(sint)dt=12I1 or I1=2I2