The correct option is B extanx.
I=∫ex(2+sin2x)(1+cos2x)dx.
=∫[ex.22cos2x+ex2sinxcosx2cos2x]dx
∫exsec2xdx+∫extanxdx.
Integrate first by parts
I=extanx−∫extanxdx+∫extanxdx.
=extanx. The last two integrals cancel.
Above is of the form
∫ex[f(x)+f′(x)]dx=exf(x),
where f(x)=tanx and f(x)=sec2x.