wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

I=dxsecx+cosecx, then I is equal to

A
⎪ ⎪⎪ ⎪(sinx+cosx)+12log∣ ∣ ∣tanx212tanx21+2∣ ∣ ∣⎪ ⎪⎪ ⎪+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
⎪ ⎪⎪ ⎪(sinx+cosx)+12log∣ ∣ ∣tanx212tanx21+2∣ ∣ ∣⎪ ⎪⎪ ⎪+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
{12[sinxcosx]122logcosec(x+π4)cot(x+π4)}+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B {12[sinxcosx]122logcosec(x+π4)cot(x+π4)}+C
I=sinxcosxsinx+cosxdx
I=122sinxcosxsinx+cosxdx
=12(sinx+cosx)21sinx+cosxdx [(sinx+cosx)2=sin2x+cos2x+2sinxcosx=1+2sinxcosx]

=12⎢ ⎢ ⎢ ⎢sinx+cosx12(12sinx+12cosx)⎥ ⎥ ⎥ ⎥dx


=12⎢ ⎢ ⎢ ⎢sinx+cosx12(sinxcosπ4+cosxsinxπ4)⎥ ⎥ ⎥ ⎥dx


=12⎢ ⎢ ⎢ ⎢sinx+cosx12sin(x+π4)⎥ ⎥ ⎥ ⎥dx

=12[sinx+cosx12cosec(x+π4)]dx


=12[sinx+cosx]dx[12cosec(x+π4)]dx


=12[sinxcosx]122logcosec(x+π4)cot(x+π4)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon