The correct option is D π12.
I=∫π/3π/6√sinx√(sinx)+√(cosx)dx. ...(1)
Substitute x=π/2−t∵a+b=π/6+π/3=π/2
∴I=∫π/6π/3√cost√(cost)+√(sint)(−dt)
=∫π/3π/6√cost√(cost)+√(sint)dt
or
I=∫π/6π/3√cosxdx√(cosx)+√(sinx), ...(2)
Adding (1) and (2), we get
2I=∫π/3π/61dx=[x]π/3π/6=π6∴I=π12.