The correct option is
D (x2−1)√1−x2−12cos−1x+CLet I=∫x√1−x1+xdx
Put u=1−x1+x⇒du=(−1−x(x+1)2−1x+1)dx
∴I=−2∫(u−1)√u(−u−1)3du
Put t=√u⇒dt=12√udu
∴I=4∫t2(t2−1)(t2+1)3dt
=4∫1t2+1dt−12∫1(t2−1)2dt+8∫1(t2−18)3dt
=(t2+1)⎛⎝25(t2+1)2+sin−1t−3sin(2tan−1t)⎞⎠+3tt2+1
=(x2−1)√1−x2−12cos−1x+C