The correct option is A 0 if n is even
Since w is the cube root of unity.∴w3=1&1+w+w2=0where w=−1+i√32&w2=−1−i√32
z=(1+i)2n−(1−i)2n(1+w4−w2)(1−w4+w2)=2n[(1+i2)2n−(1−i2)2n](1+w4−w2)(1−w4+w2)
⇒z=2n[(cisπ4)2n−(cis(−π4))2n](1+w4−w2)(1−w4+w2)=2n[(cisnπ2)−cis(−nπ2)](1+w4−w2)(1−w4+w2)
⇒z=2n+1isinnπ2(1+w4−w2)(1−w4+w2)
If n is even.
z=0
Ans: A