The correct option is
A π4ln2⇒−i(−ln(1−i))ln(1x+il)+ln(i+1)ln(1x−il)+li2(x+ix−1)li2(−x+i1+i))+c2∴arctan(x)ln(x+1)−arctan|(x)ln(x2+2x+12)−tan2(x+12,x+12)
ln(x2+1)−ili2(ll(i+1)x−i+12)+ili2(i(i+1)x−i−12)+c2
∴−ili2(i+12)−ili2(−i−12)+ili2(−1)2−−i(li2−1)2+πln(2)42
=πln(2)4