The correct option is B π2√3
Let I=∫10x(2x2+1)x8+2x6−x2+1dx
=∫10(2x3+x)(x4+x2)2−(x4+x2)+1dx
Put t=x4+x2
⇒dt=4x3+2x
Also t=0 for x=0 and t=2 for x=1
So, I=12∫20dtt2−t+1
=12∫20dt(t−12)2+(√32)2
=12.2√3⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩tan−12(t−12)√3⎫⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪⎭20
=1√3(tan−1(√3)−tan−1(−1√3))
=1√3(π3+π6)
=π2√3