1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration Using Substitution
∫01dx/1+x√2+x...
Question
∫
1
0
d
x
(
1
+
x
)
√
(
2
+
x
−
x
2
)
=
1
k
√
2
. Find the value of
k
.
Open in App
Solution
Let
I
=
∫
1
(
1
+
x
)
√
2
+
x
−
x
2
=
∫
1
√
9
4
−
(
x
−
1
2
)
2
(
x
+
1
)
d
x
Substitute
x
−
1
2
=
t
⇒
d
x
=
d
t
I
=
∫
1
(
t
+
3
2
)
√
9
4
−
t
2
d
t
Substitute
t
=
3
2
sin
u
⇒
d
t
=
3
cos
u
2
d
x
∴
I
=
∫
1
3
sin
u
2
+
3
2
d
t
Substitute
p
=
tan
u
2
⇒
d
p
=
1
2
sec
2
u
2
d
u
∴
I
=
∫
4
3
p
2
+
6
p
+
3
d
p
=
4
∫
1
(
√
3
p
+
√
3
)
2
d
p
=
−
4
3
p
+
3
=
2
(
x
−
2
)
3
√
−
x
2
+
x
+
2
∴
∫
1
0
1
(
1
+
x
)
√
2
+
x
−
x
2
d
x
=
√
2
3
Suggest Corrections
0
Similar questions
Q.
∫
1
0
d
x
(
1
+
x
2
)
√
(
2
+
x
2
)
=
π
k
. Find the value of
k
.
Q.
∫
x
sec
−
1
x
d
x
=
2
k
[
x
2
sec
−
1
x
−
√
x
2
−
1
]
.
Find the value of
k
.
Q.
The value of
∫
1
0
d
x
(
x
+
1
)
√
x
2
+
2
x
is
Q.
Find the values of k for which the following equations have real and equal roots:
(i)
x
2
-
2
k
+
1
x
+
k
2
=
0
(ii)
k
2
x
2
-
2
2
k
-
1
x
+
4
=
0
(iii)
k
+
1
x
2
-
2
k
-
1
x
+
1
=
0
(iv)
x
2
+
k
2
x
+
k
-
1
+
2
=
0