∫10xdx(x2+1)2 ∫xdx(x2+1)2=12∫dx2(1+x2)2=−12(11+x2)−1 =−12(1+x2)+c =∫10xdx(x2+1)2=[−12(1+x2)+c]∫10 =[−12(2)+c]−[−12+c] =−14+12=14 ∫10xdx(x2+1)2=14