We have,
∫10tan−1(x√1−x2)dx
Let
x=sinθ
dx=cosθdθ
Therefore,
∫π20tan−1(sinθ√1−sin2θ)cosθdθ
⇒∫π20tan−1(tanθ)cosθdθ
⇒∫π20θ.cosθdθ
Using formula,
∫I.IIdx=I∫IIdx−∫(dIdx∫IIdx)dx
Therefore,
I=∫π20θ.cosθdθ
Then,
I=θ∫π20cosθdθ−∫π20⎛⎜⎝dθdθ∫π20cosθdθ⎞⎟⎠dθ
=θ(sinθ)0π2−∫π20sinθdθ
=θ(sinθ)0π2−(−cosθ)0π2
Taking limit and we get
=[π2−0][sinπ2−sin0]−[(−cosπ2+cos0)]
=π2(1−0)−(−0+1)
=π2−1