The correct option is D 1101⋅100C30
Let, x=sin2θ⇒dx=2sinθcosθdθ∴I=∫π/20(sin2θ)70(cosθ)60⋅2sinθcosθdθ=2∫π/20sin141θcos61dθ=2×(140×138×⋯2)(60×58×⋯2)(202×200×198×⋯2)×1{∵Im,n=(m−1)(m−3)(m−5)⋯(n−1)(n−3)(n−5)(m+n)(m+n−2)(m+n−4)⋯⋅1, when m,n is not even}=2×(270×70!)×(230×30!)2101×101!=30!×70!101×(100!)=1101⋅100C30