The correct option is
A π2I=∫2π0xsin2nxsin2nx+cos2nxdx
⇒I=∫2π0(2π−x)sin2n(2π−x)sin2n(2π−x)+cos2n(2π−x)dx (∵∫a0f(x)dx=∫a0f(a−x)dx)
⇒I=∫2π02πsin2nxsin2nx+cos2nxdx−∫2π0xsin2nxsin2nx+cos2nxdx
⇒I=∫2π02πsin2nxsin2nx+cos2nxdx−I
⇒2I=∫2π02πsin2nxsin2nx+cos2nxdx
⇒2I=2π∫2π0sin2nxsin2nx+cos2nxdx
⇒I=2π∫π0sin2nxsin2nx+cos2nxdx (∵∫2a0f(x)dx=2∫2a0f(x)dx)
⇒I=4π∫π20sin2nxsin2nx+cos2nxdx ---(i) (∵∫2a0f(x)dx=2∫2a0f(x)dx)
⇒I=4π∫π20cos2nxcos2nx+sin2nxdx ---(ii) (∵∫a0f(x)dx=∫a0f(a−x)dx)
Adding (i) and (ii) we get
⇒2I=4π∫π20sin2nx+cos2nxsin2nx+cos2nxdx
⇒I=2π∫π20dx
⇒I=2π[x]π20
⇒I=2π×π2
⇒I=π2