The correct option is D none of these
Let I=√2+x2−xdt
Put t=2+x2−x⇒dt=(12−x−−x−2(2−x)2)dx
∴I=4∫√t(t+1)2dt
Put u=√t⇒du=12√tdt
∴I=8∫u2(u2+1)2du=8∫(2u2+1−1(u2+1)2)du
=4((u2+1)tan−1u−u)u2+1+C
=4((t+1)tan−1(√t)−√t)t+1+C
=√2+x2−x(x−2)+4tan−1(√2+x2−x)+C
Therefore
∫20√2+x2−xdx=[√2+x2−x(x−2)+4tan−1(√2+x2−x)]20
=[−2+4π2−]−0=2π−2