∫20x5/2√2−xdx
x=2sin2θ.
dx=4sinθcosθdθ
Thus ∫7/20(√25)sin5θ(√2)cosθ.4sinθcosθdθ
=8×4∫7/20sin6θcos2dθ
=8×4∫7/20sin6θ(1−sin2θ)dθ
=8×4[∫7/20sin6dθ−∫7/20sin8θdθ]
=8×4(56×34×12×7/2−78×56×34×12×7/2)
=5/6×3/4×1/2×7/2⇒5732×=578