To find : ∫a0x−ax+a⋅dx Consider, ∫x−ax+a⋅dx=∫1−2a∫1(x+a)dx =x−2alog(x+a)+c Then, ∫a0x−ax+a⋅dx=[x−2alog(x+a)+c]a0 =(a−2alog(1a)+c)−[0−2alog(a)+c] =a−2alog2 ∫a0x−ax+a⋅dx=a−2alog2
limx→0ax−a−xx