π/4∫0sinxcosxcos4x+sin4xdx
=π/4∫0sinxcosx(sin2x+cos2x)2−2sin2xcos2xdx
=π/4∫0sinxcosx1−π22sin2xcos2xdx
=π/4∫0sinxcosx1−sin22x2
=π/4∫02sinxcosx2−sin2x2xdx
=π/4∫0sin2x1+cos2xdx
Let t=cos2x
dt=−2sin2xdt
=−120∫1dt1+t2=−12[tan−1t]01
=−12[tan−10−tan−11]=−12[0−π4]
=π8