The correct option is
A 4−π4+π∫π40xsecxxcosx(xsinx+cosx)2dx
[xsecx−1(xsinx+cosx)2]π40−∫π40(secx+xsecxtanx)−1xsinx+cosxdx
[xsecx−1(xsinx+cosx)2]π40−∫π40sec2xdx
[xsecx−1(xsinx+cosx)2]π40+[tanx]π40
[−xcosx(xsinx+cosx)2+sinxcosx]π40
⟹[sinx−xcosxxsinx+cosx]π40
On Substituting limits
1√2−π2(1√2)π4(1√2)+1√2
⟹4−π4+π