Consider, I=∫π40√1−sin2x1+sin2x⋅dx
I=∫π40√(sinx−cosx)2(sinx+cosx)2⋅dx
I=∫π40(sinx−cosx)sinx+cosx⋅dx
I=−∫π40cosx−sinxsinx+cosxdx
I=−[log|sinx+cosx|]π40
I=−[log(sinπ4+cosπ4)−log(sin0+cos0))]
I=−[log(1√2+1√2)−log1]
I=−log(1√2+1√2)=−log√2
So, ∫π40√1−sin2x1+sin2xx=−log(√2)