The correct option is A π28
Let I=∫π20xsin2xdxcos4x+sin4x=∫π202xsinxcosxdxcos4x+sin4x
⇒I=∫π202(π2−x)sin(π2−x)cos(π2−x)dxcos4(π2−x)+sin4(π2−x)⇒I=∫π202(π2−x)sinxcosxdxcos4x+sin4x=π∫π20sinxcosxdxcos4x+sin4x−∫π202xsinxcosxdxcos4x+sin4x=π∫π20sinxcosxdxcos4x+sin4x−I⇒2I=π∫π20sinxcosxdxcos4x+sin4x=π2∫π2011+(tan2x)2d(tan2x)⇒2I=π2[tan−1t]∞0=π2(tan−1∞−tan−10)⇒I=π28