∫∞0logx1+x2dx=∫ln(x)(x−i)(x+i)dx
=∫⎛⎜⎝iln(x)2(x+i)−iln(x)2(x−i)⎞⎟⎠dx
=∫ln(iu+1)udu+ln(−i)∫1udu
=−∫−ln(1−v)vdv
∫ln(iu+1)udu+ln(−i)∫1udu
=∫⎛⎜⎝ln(1−iu)u+ln(i)u⎞⎟⎠du
i2∫ln(x)x+idx−i2∫ln(x)x−idx
=iln(−i)ln(|x+i|)2−iln(i)ln(|x−i|)2−iLi2(−i(x+i))2+iLi2(i(x−i))2+C
=0