Let I=∫∞0dx(x+√1+x2)n
Substitute x=tanθ⇒dx=sec2θdθ
I=∫π/20sec2θdθ(tanθ+secθ)n=∫π/20cosn−2θdθ(1+sinθ)n
Using ∫baf(x)dx=∫baf(a+b−x)dx
I=∫π/20sinn−2θdθ(1+cosθ)n=∫π/20(2sinθ/2cosθ/2)n−2(2cos2θ/2)ndθ
=14∫π/20sinn−2θ/2cosn+2θ/2dθ=14∫π/20sinn−2θ/2cosn−2θ/2dθ.1cos4θ/2dθ
I=14∫π/20tann−2θ(1+tan2θ2).sec2θ2.sec2θ2dθ
Substitute tanθ2=t⇒12sec2θ2dθ=dt
I=14∫10tn−2(1+t2).2dt=12∫10(tn−2+tn)dt
=12[tn−1n−1+tn+1n+1]10=12[1n−1+1n+1]=nn2−1
Hence b=35,a=6
Therefore b−a=29