The correct option is
A π log2
Let
I=∫∞0log(1+x2)1+x2dxSubstitute x=tanθ
Then, I=∫π/20−2log(cosθ)dθ
Let L=∫π/20log(cosθ)dθ .....(1)
Using (a+b−x) rule,
L=∫π/20log(sinθ)dθ .....(2)
Adding (1) and (2), we get
L=∫π/2012log(sinθ cosθ)dθ
L=12∫π20log(sin2θ)dθ−π4log(2)
Substituting 2θ=π2−t, we get
L=14∫π/2−π/2log(cost)dt−π4log(2)=12∫π/20log(cost)dt−π4log(2)
⇒L=L2−π4log(2)
⇒L=−π2log(2)
Since, I=−2L
⇒I=πlog(2)
So, option A is correct.