No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2(a+b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π2ab(a+b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
π(a+b)ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ2ab(a+b) I=∫∞0dx(x2+a2)(x2+b2)=1(a2−b2)∫∞0(x2+a2)−(x2+b2)(x2+a2)(x2+b2)dx=1(a2−b2)∫∞0⎛⎜⎝1(x2+b2)−1(x2+a2)⎞⎟⎠dx=1(a2−b2)([1btan−1xb]∞0−[1atan−1xa]∞0)=1(a2−b2)(π2b−π2a)=π2ab(a+b)