The correct option is A π4.
Substitute x=tanθ∴dx=sec2θdθ.
When x=∞,tanθ=∞∴θ=π/2.
∴I=∫π/20tanθsec2θdθ(1+tanθ)(sec2θ)dθ.
Now change to sinθ and cosθ.
∴I=∫π/20sinθdθcosθ+sinθ=π4
=∫π/20sin(π2−θ)dθcos(π2−θ)+sin(π2−θ)=∫π/20cosθdθcosθ+sinθ=∫π20dθ−∫π/20sinθdθcosθ+sinθ=π2−I
Therefore, I=π4
Ans: A