The correct option is D π4
Let l=∫π/20dx1+tan3x
⇒l=∫π/20cos3xsin3x+cos3xdx ... (i)
⇒l=∫π/20cos3(π2−x)sin3(π2−x)+cos3(π2−x)dx{∵∫a0f(x)=∫a0f(a−x)dx}
⇒l=∫π/20sin3xcos3x+sin3xdx ....(ii)
On adding Eqs. (i) and (ii), we get
2l=∫π/20sin3x+cos3xsin3x+cos3xdx
=∫π/20(1)dx=[x]π/20
⇒2l=π2⇒l=π4.