∫π201sinx+cosxdx
∫π201+tan2x21−tan2x2+2tanx2dx
∫π202d(tanx2)1−(tanx2+1)2=2∫π20d(tanx2)(√2)2−(tanx2−1)2
=2[12√2]log∣∣ ∣ ∣∣√2+tanx2−1√2−(tanx2−1)∣∣ ∣ ∣∣π20
=1√2log(√2+2√2−2)
=log(1+√21−√2)
=√2log(√2+1)