I=∫π20acosx+bsinxcosx+sinxdx ..........eq(i)
We know that, ∫π20f(x)dx=∫a0f(a−x)dx
So, I=∫π20asinx+bcosxcosx+sinxdx ............eq(ii)
Adding eq(i) and (ii)
⇒I=∫π20(a+b)cosx+(a+b)sinxcosx+sinxdx
⇒I=∫π20(a+b)(cosx+sinx)cosx+sinxdx
⇒2I=∫π20(a+b)dx
⇒2I=(a+b)∫π201dx
⇒I=(a+b)2(π2)
∴I=(a+b)π4