The correct option is C 1
cos2x−cos7x=2sin9x2sin5x2
1+2cos3x=1+2(1−2sin23x2)=3−4sin23x2
∴∫π20cos2x−cos7x1+2cos3xdx=∫π202sin9x2sin5x23−4sin23x2dx
=∫π202sin9x2sin5x2.sin3x23sin3x2−4sin33x2dx
=∫π202sin9x2sin5x2.sin3x2sin9x2dx
=∫π202sin5x2.sin3x2dx
=∫π20(cosx−cos4x)dx
=[sinx−14sin4x]π20
=1