I=∫π20(cosx(1+sinx)(2+sinx))dx
letsinx=t thencosxdx=dt
also if x=0 then t=sin0=0
andifx=(π2) then t=1
∴I=∫101(1+t)(2+t)dt
=∫10[11+t−12+t]dt
=[log(1+t)−log(2+t)]10
=[log(1+t2+t)]10
=log23−log12
=log43