∫π/20cosxdx1−sin2x+sin4x
Put sinx=t
cosxdx=dt
When x=0⇒t=0
When x=π2⇒t=1
I=∫10dtt4−t2+1
I=12∫102t2dtt2+1t2−1
I=12∫101t2+1+1t2−1dtt2+1t2+2−2−1
I=12∫101t2+1dt(t−1t)2+(1)2−12∫101−1t2dt(t+1t)2−(√3)2
Put t−1t=u in first integral
⇒(1+1t2)dt=du
Put t+1t=v in second integral
⇒(1−1t2)dt=dv
I=12∫0−∞duu2+12+12∫∞2dvv2−(√3)2
I=12[tan−1u]0−∞+14√3[log|v−√3v+√3|]∞2
I=π4+14√3log|2+√32−√3|