wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

π/20cosxdx1sin2x+sin4x=πk+14(3)log((2+3)(23)). Find the value of k.

Open in App
Solution

π/20cosxdx1sin2x+sin4x
Put sinx=t
cosxdx=dt
When x=0t=0
When x=π2t=1
I=10dtt4t2+1
I=12102t2dtt2+1t21
I=12101t2+1+1t21dtt2+1t2+221
I=12101t2+1dt(t1t)2+(1)2121011t2dt(t+1t)2(3)2
Put t1t=u in first integral
(1+1t2)dt=du
Put t+1t=v in second integral
(11t2)dt=dv
I=120duu2+12+122dvv2(3)2
I=12[tan1u]0+143[log|v3v+3|]2
I=π4+143log|2+323|

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon