The correct option is
A π4I=∫π/20dx1+√tanx=∫π/20√cosxdx√sinx+√cosx ......... (i)
I=∫π/20√cos(π2−x)√sin(π2−x)+√cos(π2−x)dx
∵∫a0f(x)dx=∫a0f(a−x)dx
∴I=∫π/20√sinx√sinx+√cosxdx .......... (ii)
Adding (i) and (ii) we get,
2I=∫π/20√sinx+√cosx√sinx+√cosxdx=∫π/20dx=π2
or I=π4.