I=∫π20sin2xsinx+cosxdx
I=∫π20cos2sinx+cosxdx
2I=∫π201sinx+cosxdx
2I=∫π20(1+tan2x2)−tan2x2+2tanx2+1dx
2I=∫π202dtanx2(√2)2(tanx2−1)2
=12√2log∣∣
∣
∣∣√2+tann(x2)−1√2(tanx2)+1∣∣
∣
∣∣
=12√2log∣∣
∣
∣∣tann(x2)+√2−1(√2+1)tanx2∣∣
∣
∣∣∫π40
=12√2log((√2+1)2)=1√2log(√2+1)