wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π/20xdxsinx+cosx=

A
π22log(2+1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π222log(2+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
πlog(2+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
log(2+1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A π22log(2+1)
Let I=π20xdxsinx+cosx ...(1)
Using property baf(x)dx=baf(a+bx)dx
We get
I=π20(π2x)dxsin(π2x)+cos(π2x)=π20(π2x)dxcosx+sinx ...(2)
Adding (1) and (2), we get
2I=π2π20dxsinx+cosx
Substituting tan(x2)=t12sec2(x2)dx=dt
We get sinx=2t1+t2,cosx=1t21+t2,dx=2dt1+t2
Therefore
2I=π2102dt(1+t2)(2t1+t2+1t21+t2)=π10dtt2+2t+1=π10dt2(t1)2
Substituting t1=sdt=ds
2I=π01ds2s2=π01ds2(1s22)
Again substituting s2=uds=2du
2I=π201/2du1u2=π2[12log(u+11u)]012=π22log(2+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon