The correct option is
A
π2√2log(√2+1)
Let I=∫π20xdxsinx+cosx ...(1)
Using property ∫baf(x)dx=∫baf(a+b−x)dx
We get
I=∫π20(π2−x)dxsin(π2−x)+cos(π2−x)=∫π20(π2−x)dxcosx+sinx ...(2)
Adding (1) and (2), we get
2I=π2∫π20dxsinx+cosx
Substituting tan(x2)=t⇒12sec2(x2)dx=dt
We get sinx=2t1+t2,cosx=1−t21+t2,dx=2dt1+t2
Therefore
2I=π2∫102dt(1+t2)(2t1+t2+1−t21+t2)=π∫10dt−t2+2t+1=π∫10dt2−(t−1)2
Substituting t−1=s⇒dt=ds
2I=π∫0−1ds2−s2=π∫0−1ds2(1−s22)
Again substituting s√2=u⇒ds=√2du
2I=π√2∫0−1/√2du1−u2=π√2[12log(u+11−u)]0−1√2=π2√2log(√2+1)