The correct option is C πlog2
Let I=∫π/20log(tanx+cotx)dx=∫π/20log(sinxcosx+cosxsinx)dx
=∫π/20log(2sin2x)dx=log2∫π/20dx−∫π/20log(sin2x)dx
Put 2x=z⇒dx=12dz
∴I=π2log2−12∫π0log(sinz)dz=π2log2−12.2∫π/20logsinzdz.
=π2log2+π2log2=πlog2.......(as ∫π/20logsinz=π2log2)