Consider the given integral.
I=∫π20ln(sinx)dx …….. (1)
We know that
∫baf(x)dx=∫baf(a+b−x)dx
Therefore,
I=∫π20ln(sin(π2−x))dx
I=∫π20ln(cosx)dx ……. (2)
On adding equation (1) and (2), we get
2I=∫π20ln(sinx)+ln(cosx)dx
2I=∫π20ln(sinxcosx)dx
2I=∫π20ln(2sinxcosx2)dx
2I=∫π20ln(sin2x)dx−∫π20ln(2)dx
2I=∫π20ln(sin2x)dx−ln2(x)π20
2I=∫π20ln(sin2x)dx−π2ln2
Let t=2x
dt2=dx
Therefore,
2I=12∫π0ln(sint)dt−π2ln2
2I=22∫π20ln(sint)dt−π2ln2[∵∫a0f(x)dx=2∫a/20f(x)dx]
2I=∫π20ln(sint)dt−π2ln2
2I=I−π2ln2
I=−π2ln2
Hence, this is the answer.