wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π/20logsinxdx=

Open in App
Solution

Consider the given integral.

I=π20ln(sinx)dx …….. (1)

We know that

baf(x)dx=baf(a+bx)dx

Therefore,

I=π20ln(sin(π2x))dx

I=π20ln(cosx)dx ……. (2)

On adding equation (1) and (2), we get

2I=π20ln(sinx)+ln(cosx)dx

2I=π20ln(sinxcosx)dx

2I=π20ln(2sinxcosx2)dx

2I=π20ln(sin2x)dxπ20ln(2)dx

2I=π20ln(sin2x)dxln2(x)π20

2I=π20ln(sin2x)dxπ2ln2

Let t=2x

dt2=dx

Therefore,

2I=12π0ln(sint)dtπ2ln2

2I=22π20ln(sint)dtπ2ln2[a0f(x)dx=2a/20f(x)dx]

2I=π20ln(sint)dtπ2ln2

2I=Iπ2ln2

I=π2ln2

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon