∫π/20√cosθsin3θdθLet cosθ=t
−sinθdθ=dt
∫√cosθsin2θsinθdθ
∫√cosθ(1−cos2θ)sinθdθ
∫√t(1−t2)(−dt)
∫√t(t2−1)(dt)
∫(t5/2−t1/2)dt
27t7/2−23t3/2
[27(cosθ)7/2−23(cosθ)3/2]π/20
(27(cos(π/2))7/2−23(cos(π/2))3/2)−(27(cos0)7/2−23(cos0)3/2)
=0−(27−23)
=23−27
=821