CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π0xa2cos2x+b2sin2x dx

Open in App
Solution

Using the property, a0f(x)dx=a0f(ax)dx
Applying this property to the given integral,
I=π0xdxa2cos2x+b2sin2x ......(1)
I=π0(πx)dxa2cos2(πx)+b2sin2(πx)
I=π0xdxa2cos2x+b2sin2xπ0(πx)dxa2cos2(πx)+b2sin2(πx) ......(2)
Adding (1) and (2), we get
2I=π0πdxa2cos2x+b2sin2x
I=π2π0dxa2cos2x+b2sin2x
I=2×π2π0dxa2cos2x+b2sin2x using the property,2a0f(x)dx=2a0f(ax)dx if f(2ax)=f(x)
I=ππ20dxa2cos2x+b2sin2x
Divide the numerator and denominator by cos2x we get
I=ππ201cos2xdxa2cos2xcos2x+b2sin2xcos2x
I=ππ20sec2xdxa2+b2tan2x
Put btanx=tbsec2xdx=dt or sec2xdx=dtb
Also, when x=0,t=0 and when x=π2,t
So,I=πb0dta2+t2
I=πabtan1(ta)]0
I=πab[π20]
=π22ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon