wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π0xdxa2cos2x+b2sin2x=π22ab

Open in App
Solution

I=πoxdxa2cos2x+b2sin2x...(1)
I=πo(πx)dxa2cos2x+b2sin2x..(2)
Adding (1) & (2)
2I=πox+πxa2cos2x+b2sin2x
2I=πoπdxa2cos2x+b2sin2x
=πoπsec2xdxa2+b2tan2x=1b2πoπsec2xdx(ab)+tanx
Let tanx=tat
sec2xdx=dt
2I=πb2π0dt(ab)2+t2
=πb2×ab×[tan1t]
2I=πab[tan1(tanx)]π0
2I=πab[x]π0
I=πab[x]=π22ab


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon