∫π0dx3+2sinx+cosx =∫π0dx(1+tan2x2)3(1+tan2x2)+2(2tanx2)+(1−tan2x2) =∫π0sec2x2dx2tan2x2+4tanx2+4 =∫π02d(tan2x2)(√2tanx2+√2)2+(√2)2 =∫π0d(tan2x2)(√2tanx2+√2)2+(√2)2 =∫π0d(tan2x2)(tanx2+1)2=tna−1(tanx2+1)∫π0 =π2−π4 =π4