The correct option is D π(2−π)
I=∫π0x2cosx(1+sinx)2dx
=[−x21+sinx]π0+2∫π0x1+sinxdx
=−π2+2I1
Where I1=∫π0x1+sinxdx=∫π0(π−x)1+sin(π−x)dx
=π∫π0x1+sinxdx−I1
⇒2I1=π∫π011+sinxdx=2π∫π2011+sinxdx
⇒I1=π∫π2011+sinxdx=π∫π2011+sin(π2−x)dx
=π∫π2011+cosxdx=π2∫π20sec2x2dx
=[πtanx2]π20=π
Therefore I=∫π0x2cosx(1+sinx)2dx=−π2+2π