wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

π0x2cosx(1+sinx)2dx=π(2+π). If this is true enter 1, else enter 0.

Open in App
Solution

Let I=π0x2cosx(1+sinx)2dx
Integrating by parts
I=[x211+sinx]π0+211+sinxxdx=π2+2I1
Where
I1=π0x1+sinxdx=π0πx1+sin(πx)dx ....( using integration property )
2I1=ππ011+sinxdx=ππ01sinxcos2xdx
=π(sec2xsecxtanx)dx=π[tanxsecx]π0=π[2]=2π
Therefore I=π2+2π=π(2π)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon